
REPORT DCCUMENTA-T1ON PAGE :zi~.
~ a ~ -~. QUO

1. A4IMCT Usa GMT I&W. WOW [L& REPGRT AIE J. MEOST T "a MO AE COVERE
I June 1, 86 - Aug 31 , 86

4L MU Aip sLo*iouI j S 6Um
Opticai Symbolic processor for expert system executia
quarterly technical report

i *A@R- F49620-

16a"ft ew Derstine * 86-C-0082

Aloke Cuha AFOSR.T{ 9 09 :) 0
In Raja Ramnarayan

7. PU40 osuRGAflMA MAMAMS AG AMOUSUE5) L uvraob~ ~t&KA
Honeywell Physical Sciences Center"PnNM

10701 Lyndale Avenue SouthLO C
Bloomington, MN 55420

c

,*~g~ jOj ~ACY MAIW) AUG AQGAUh4EI 1IJp; I lfw

AFOSRA9=Ipt
U

~ Bid 410
~ Boiling AFB DC 20332-6448

11. UPUIAITAAT NIS

124. 4SAI aiAA&ILT STATAN MIJ ua OMTXTUUflO ccat

3. __________I
______ d 6

A

".~6 MM&hC CM

aii QI

sun"" int1 4810104 -3,artMWMr M"MU Af

WIniL SOMLIC PROSS FM EW SYS= EIXEC

QUAR1HLY TECEMCAL REE

June 1, 1986 to August 31, 1986

I.

Sponsored by

Advanced Research Projects Agency (DOD) X-

ARPA Order No. 5794
Monitored by AEOSR Under Contract #F49620-.6-C-0082

Prepared by

... lMatthew Derstine
Aloke Guha*

Raja Ramnarayan*

-... Honeywell Physical Sciences Center
10701 Lyndale Avenue South

Bloomington, M 55420

..... -! *-Honeywell Corporate Systems Development Division

Approved:
A7V Hdsain Norman Foss
Section Head Department Manager

SUMMNRY

The goal of the Optical Symbolic Processor for Expert System Execution program
is to develop concepts for optical computers which can perform real-time
synbolic processing. The program is divided into two sections, architecture
development and development of a device for reconfigurable interconnects. In
the first quarter of the program, only architecture development work was
performed.

The approach for this phase of the program has been to examine computational
models of computer languages and determine the primitive operations required.
Possible optical implementations of these primitives were then examined and
evaluated. In general, a top down approach was taken with the goal of a
direct optical implementation of the desired primitive operations.-)

It was found that the computational requirements of logic languages and
functional languages (Section III] are primitive operations which involve
manipulation of complex data structures such as graphs and trees, and that the
execution of the languages can be described as manipulations of those data
structures. The representation of the complex data structures imply that the
representations must be exact (digital) and that some means to denote
connections between data items, such as pointers, is required. Since the
representation between data items is more important than the actual items
stored, the post inportant functions involve the manipulation of the data
structures. k

Examination of the optical architectures available (Section IV] to represent
and implement the functions identified showed that some way to perform
location addressable menory was needed. One technique, matrix representation,
was identified and a technique to construct addressable optical rneories was
invented. By examination of a possible architecture, it was found [Section
V], however, that these methods do not adequately perform the computational
primitives. Moreover, it was found that while functional languages and logic
languages require similar primitive operations, implementation of logic
languages in parallel optical environments is more difficult.

In the next phase of the research, optical architectures will be examined to
determine how they can perform the required functions through combinations of
lower level operations.

I. INMCOOCTION

One long-term goal of the Optical Symbolic Processor for Expert System
Execution program is to develop a computer for real-time symbolic computing.
The chosen approach was to investigate concepts for the implementation of an
existing computer language on an optical computer architecture. Many
researchers have suggested that the parallelism of optics might be exploited
for synbolic processing applications. [1-8] These proposals have been made
because of the ease with which optics performs correlations and because of the
large communications bandwidth of two-dimensional interconnects. This report
describes the first examination of how the optics could be used within the
framework of implementing a well-specified parallel language, PARLOG[9], on a
parallel optical computer. It also suggests other types of languages which
may be better suited to optical computer architectures.

PARLOG was initially selected because of the belief that the large amount of
matching and searching required in logic languages would lend itself to
optical computing. This report examines how logic languages, of which PARLOG
is one, and functional languages could be implemented on an optical computer.
The approach taken was to examine the problem fram the top, that is, examine
how each of the required functions can be directly implemented in an optical
computing structure. This report documents functions and capabilities needed
to develop a symbolic optical computer architecture.

Section II of the report examines the languages which could be used for expert
system development. The third section describes the computational model of
PARLOG and the computational primitives required for both PARLOG and
functional languages. The fourth section describes how optics can address
some of the functions required for symbolic processing. The final section
describes our conclusions for the period June 1 - August 31 and future plans.

II. LANGUAGES FOR EXPERT SYSTEM SHELLS

An expert system shell (e.g., KEE, ART, LOOPS) is a tool that facilitates the
development of expert systems. It provides facilities such as forward
chaining (data-driven reasoning), backward chaining (goal-driven reasoning),
procedural computation, object-oriented knowledge representation, evidential
reasoning, models of time and hypothetical worlds, belief maintenance,
nonmonotonic reasoning, and explanation facilities.

Languages for implementing expert system shells can be divided into three
categories: imperative, functional, and logic. A fourth category combines
logic and functional languages, but such languages are still under
development, and so we exclude them fram consideration here.

Imperative languages, particularly LISP (as it is used today), form the basis
of current expert system shells. However, they permit uncontrolled side
effects via the assignment operation. The presence of side effects makes it
very difficult to exploit parallelism in such languages. Moreover, due to the
assignment operation, the execution of an imperative language program can be
viewed as a series of changes to a large state space. The impact of this is
that the implementation of such languages requires the use of stacks. As will
be seen in a later section, the large size of the state space and the need for
stacks do not augur well for the optical implementation of imperative
languages.

Programs in functional languages are essentially definitions and applications
of functions. There is no notion of operations on named objects, and
therefore, there are no side effects. Examples of functional languages
include pure LISP, FP, and dataflow languages such as VAL and Id. LISP, as it
is generally used today in expert systems and other applications, is an
imperative rather than a functional language; great use is made of side
effects. Computing by effect implies incremental changes made to variables by
successive assignment. Pure functional languages[10, such as pure LISP, thus
canpute by value and not by effect, and functions are used to cmpute new
values from old.

The best-known logic programming language is Prolog, which has received
widespread attention as a result of the Japanese Fifth Generation effort. The

problem with Prolog is its sequential semantics, which render it inherently
unsuitable for parallel processing. The semantics of Prolog are defined in
terms of a sequential execution model. In this model, the order of the
clauses in a Prolog "database" is significant; the database is scanned
sequentially from top to bottom when attempting to satisfy a goal. Within a
clause, the atomic formulas in the body are satisfied from left to right in
order. Finally, the cut operator, when executed, prevents searching for later
clauses to satisfy the goal that the current clause is attempting to satisfy.

Concurrent logic programming languages, e.g., Concurrent Prolog, PARL(G,
Guarded Horn Clauses, alleviate the problems posed by the sequential semantics
of Prolog. Here, atomic formulas are executed as processes. A clause
represents the expansion of a process (the predicate in the consequent) into a
set of processes (the predicates in the body). Processes axmwnicate with
each other via shared variables. Synchronization mechanisms are provided to
delay the consumer process when it attempts to reference a variable that the
produlcer process has not yet bound. A goal is evaluated by checking the
multiple clauses in parallel for applicability and non-deterministically
choosing one of them. The atomic formulas in the body are executed in
parallel, as concurrent processes, with the shared variables acting as
cmmunication channels.

As part of another effort at CSDD, PARLOG was identified as the language that
best meets the requirements for implementing high performance expert system
shells. Therefore, as far as logic programming languages go, we will restrict
ourselves to investigating optical implementations for PARL . This
investigation will enable us to identify issues involved in the optical
implementation of other logic programming languages as well.

In order to develop techniques for the optical implementation of logic
languages and functional languages, we need to understand their operational
semantics. With this in mind, we briefly describe computational models for
these languages in the next section.

III. COMPUTATIONAL MODELS FOR EXPERT SYSTEM LANGUAGES

The operational semantics of PARLOG are best understood in terms of the AND/OR
process model. In this model, a process is created for evaluating literals
and for searching for a candidate clause during evaluation of a literal. The
state of a PARLOG evaluation is represented by a process structure called the
AND/OR process tree. The nodes in this tree are processes. The leaf
processes are either runnable or suspended on some variable. The non-leaf
processes are not runnable. They await results from their child processes.
There are two types of non-leaf processes: AND processes and OR processes. A
process assumes a type AND if it is to evaluate a conjunction of literals. A
process assumes a type OR if it is to search for a candidate clause among the
clauses defining a relation. A PARLOG query is evaluated by first searching
for a candidate clause and then non-deterministically committing to one such
clause. Upon commitment, the literals in the body of the chosen clause are
evaluated. During query evaluation, the AND/OR process tree grows and shrinks
ynamically.

As part of another effort at CSDD, a parallel abstract machine has been
designed for PARLOG. This machine is a loosely-coupled multiprocessor. Each

processing element (PE) is a collection of computing agents that perform
dedicated functions such as process tree growth, process tree management, and
unification. The PARLOG data objects (or terms) are represented as Directed
Acyclic Graphs CA)s) in this machine. Data objects and the AND/CR processes
are distributed among the various PEs. However, the machine has a single
virtual address space. This means that the DAGs and the process tree are
linked across PEs. This linkage will be seen to have important consequences
for optical implementation of PARLOG.

There are basically two computational models for functional languages:
dataflw and reduction. In a dataflow model, the program is compiled into a
graph representing the data dependencies. The nodes of such a graph are
reterred to as operators. They represent function applications, while the
edges reflect the amposition of the functions. The dataflow graph is
executed directly; an operator *fires" whenever its input arguments are
present, sending any output to its direct descendants.

In a reduction model, the program is viewed as a set of rewrite rules. The
left hand side of each rule corresponds to a function specification; the right
hand side, to the function definition. In order to evaluate a function, first
a directed graph that captures the rewrite information is built up. The nodes
in this graph correspond to functions. The immediate descendants of a node
correspond to the function's definition. The cmputation can proceed in
either a demand driven or an eager manner. After a function is evaluated, it
is replaced by its value, hence the name reduction. Eventually, the whole
graph will be replaced by one value.

Reduction comes in two varieties: string reduction and graph reduction. In
string reduction, every occurrence of a variable is treated as a distinct
copy, while in graph reduction, all occurrences share the same copy.

A technique called combinator reduction is often used for implementing
functional languages efficiently. In this technique, variables occurring in a
function definition are "abstracted out" to produce a function definition
consisting solely of operators called combinators. Ccmbinators are higher
order functions. That is, they can accept functions as arguments and return
functions as results. The so-called S, K, and I ambinators[ll] are
sufficient to remove all variables from any function definition. Combinator
reduction involves two steps. First, the program is transformed into
ccmbinator expressions (containing no variables). Second, these expressions
are reduced as dictated by the definitions of the cambinators.

In summary, the basic functions required for PARLOG and for functional
languages are similar. Both can be expressed in terms of graph reduction
models. This implies that the representation of the connections between the
data is more important than the actual data items. This has important
consequences for implementation of these languages. Most importantly, it
requires the storage of the data structures to be exact. This is because
errors in representation of the data can easily and completely destroy its
meaning.

Exact representation of data structures can be most easily accomplished with
digital representation. Analog representation could be employed if the
probability of error was sufficiently low, but in practice, digital systems

are the only choice. This choice will then limit the types of optical
computing structures to those which represent the data in digital form. This
does not, however, imply that all of the computation must necessarily be
digital. Very low level (node-to-node) matching might be able to use analog
methods, but manipulation of the data structures must use digital computation.
Nevertheless, since the most important and time consuming part of the task is
the data structure manipulation, the use of analog optical structures to do
the matching may not provide any performance increase.

Another implication of the representation of the data by graphs and trees is
the need for sane way to express the connections. Traditional computer
designs handle this problem through the use of pointers. Pointers are
typically addresses of locations where other data items are stored. This
approach to the representation of complex data structures is attractive
because it allows complicated relationships to be efficiently stored without
having to be specified at the time the program was developed. It does,
however, require that the machine possess addressable memory.

In the next section, we will examine the primitive operations readily
available in optical computing. Specifically, we examine digital optical
architectures with the goal of expressing and manipulating data structures.

IV. PRIMITIVES IN OPTICAL ODMPJTING

An examination of the optical cumputing primitives, and the fundamental and
practical limitations of optics will provide us with data as to how well
various computational models can be supported and what changes must be made to
make them amenable to optical computation.

The features of optics that we would like to exploit are its parallelism,
purallel write and read capability, high-bandwidth interconnects, and data
representation in more than one dimension, such as arrays.

The limitations of many proposed optical computing schemes that need to be
avoided are the method of input and output to the computer and the need for
photo-electronic and electro-photonic conversions. These are typical
bottlenecks in hybrid computing systems since indiscriminate conversion of
optical to electrical signals results in a degradation of performance due to
the need for conversion of the data representation in each system and
power/speed considerations. These inefficiencies occur because symbol
representations in optical and electronic computers can be expected to be
different, and electron-photon conversion requires excess power.

Although traditional optical computing in signal processing uses analog data
representation, because of noise problems and the requirement of precise
representation of data structures in expert systems, digital representation is
preferred.

All approaches to provide the primitive operations required (Section II, III)
must take into account the overall rAture of the task. From the optical
device point of view, these primitive operations are the macro-functions which
must be performed. All of the macro-functions operate on data structures, not
on simple data items. Moreover, makeup of these data structures are not known
until the macro-function is executing. The required operations cannot be

performed by operations like simple correlations since the structure of the
data must be examined.

Operations like searching and matching of digital data items could, perhaps,
still be performed using correlations. However, since the macro-functions are
all manipulations on data structures, correlations cannot be employed unless
the data structure can be represented as an entity rather than as items
connected together. At present, this type of representation is difficult to
achieve in an optical oamputer because the data strictures change, requiring a
means for selecting, adding, deleting, splitting, and joining.

The first item that must be investigated in developing ways to perform the
macro-functions is the representation of the graphs and lists using optical
architectures. As stated previously, this type of representation typically
requires the use of pointers and location addressable memory. 7his need for
addressable memory can be tackled in two ways: by developing another type of
memory structure or by developing a way to implement addressable memory with
optical devices.

The first method we examined to implement a different memory and camputing
structure is the optical finite state machine (OFSM).[I,2] The feature of
this architecture which is unlike conventional electronic computers is that
the memory is not separated from the processor. Computing systems have been
proposed which are omposed of parallel planes of lOOxi000 optical gates
which perform the logic operations of the finite state machine. (2]

The conventional way to design a finite state machine is to enumerate all the
possible inputs, outputs, and next states, and then develop some combinatorial
logic to perform that function. However, design of a system with over a
trillion (1 x101 2) states is practically impossible when done in this manner.
Such an effort would be tantamount to specifying all of the possible data
structures and all the values of the data items at the time the machine is
designed. It also would require specifying the answers for each possible
case, in other words, enumerating all of the answers for all of the possible
computations before the machine is ever constructed.

The other approach to developing a finite state machine would be to specify
the transition rules for the states in such a way as to avoid specifying all
of them explicitly. Symbolic Substitution is such a method[2], but it has the
disadvantage that the machine is no longer massively interconnected. Only
pixels within a certain neighborhood can comuxicate directly. This will
eventually limit the speed at which a omnputation can occur, since many cycles
will be required to transfer data around the plane.

Symbolic Substitution does, however, have the advantage of being easily
implemented[2] and may be able to employ high-speed (gigabit) optical
components. (8] We will be investigating Symbolic Substitution in the future
to determine if it can perform the required primitive and macro-functions.

Another method for representing data structures is the use of adjacency
matrices(4, 7]. Graph structures can be represented in a matrix structure by
assigning nodes of the graph to rows and columns. When there is a connection
between nodes, an entry is made at the intersections of rows and columns of
the two elements. A directed graph may be represented by using the rows to

indicate the node the connection is from and the columns to indicate the node
that is the destination. Figure 1 illustrates the case of a simple directed
graph. This scheme has the disadvantage that menory is used very
inefficiently; only a few connections are made between nodes, while there is
memory allocated for any of the possible connections.

In this scheme, no addressing is required to check interconnections between
data items; it is all present in the matrix. To set up the connections,
however, some means is required to address and set/reset the elements of the
matrix. This is made even more difficult when the elements to be added to the
existing matrix make up another graph. The new subgraph must be rearranged to
be added as rows and colLumns to the existing graph. If elements were to be
removed from the graph, some means would be needed either to keep track of the
empty rows and columns or to rearrange the graph so that the empty rows and
columns are no longer in the interior of the data structure. Both of these
methods require other data structures, such as linked lists, to keep track of
the altered data. Thus, to perform nontrivial operations on data stored in
matrix format, some form of addressing must be used at some point.

One possible way to use a matrix memory would be to use masks stored in a
holographic memory. C6] Only a few masks could be stored in this way, but it
might be possible to set up primitive select and add operations. Such a
memory system would be controlled by an OFSM acting as a sequencer. The
holographic memory, the OFSM, and the matrix memory would make up a special
kind of addressable memory in that it would be optimized to store data
structures rather than just data items.

The other solution to location addressable memory is to actually construct
memory which has binary addresses. The problem with this approach has been
the difficulty in generating the decoding addresses. Figure 2 shows a new
concept for an address decoder. This device makes up one stage of the address
decoder and consists of a phase conjugate mirror combined with two switchable
absorbers(SAl and SA2). At the beginning of the decoding process, a single
beam is incident upon the phase conjugate mirror. If SAl is open, the beam
passes to output 1 and if SA2 is open, the beam passes to output 2. By
connecting the switchable absorbers to one of the address lines so that SAl is
open while SA2 is closed and vice versa, the device becmes a one of two
selector. Since the device is not limited to the position of the input beam,
it can be cascaded. Thus, at the input to the second stage, the beam could be
at one of two possible positions. Then after going through one or the other
switchable absorber, the beam is at one of four positions. By cascading four
stages, the device would be a I of 16 selector, which is just what is required
to address 1 of 16 maory locations. Similarly, eight stages could be
cascaded to form a selector for 256 locations, and if a square geometry is
used, two eight-stage decoders could decode a 64k by 1 memory. Such a
geometry would require arrays of maory elements like edge-addressed bistable
devices demonstrated in InSb. [12]

In summary, it is possible for optics to perform most of the memory functions
needed for symbolic computing, but it is unclear that optics has any clear
advantage over electronics. In the next section, w will examine the issues
involved in implementing logic languages and functional languages using
optical primitives by examining an example optical computer architecture.

V. ISSJES IN OPTICAL IMPLEMENTATION OF EXPERT SY.STEM LANGUAGES

Issues in optical implementation of PARIlG

Based on the AND/CR graph reduction computational model [9J, which appears
most appropriate for PARLOG, we defined a broad optical architecture for
PARLOG. This corresponds to a distributed architecture consisting of multiple
PEs connected point-to-point in optics, with both shared and dedicated
memories. The shared memory must contain the AND/CR process descriptors since
many AND/CR processes can be simultaneously evaluated by many PEs.
Furthermore, the shared memory must also contain the terms that are
constructed during evaluation of queries. The dedicated memory of each PE
contains the omplete compiled program and the template data objects that are
used for matching or unification during runtime. Thus, the shared memory
contains only those data objects that are constructed in runtime, while the
dedicated memory contains all data objects that are known at compile time. By
using shared memory for runtime-generated objects, the problem of linking
different tYAGs or sutDAGs can be avoided.

The PEs in the parallel abstract machine for PARLOG consist of different
agents. In optics, such agents are best realized in terms of a cluster of
OFSMs which executes the algorithms omprising the function of the agent. The
PEs, as well as the ager.ts, commuicate via messages. Different message types
can be recognized by the use of a set-associative pattern matching on the
message type. Since OFSMs are limited in complexity; all control operations,
such as logic, matching, and arithmetic operations, are done external to the
basic finite state machine. Another approach would be to use OSEMs which
employ Symbolic Substitution and perform all of the logic, arithmetic, and
matching functions.

The crucial design of the optical architecture, however, is the data
representation of the DGs. Given the severe limitations of optical memory,
linked lists structures cannot be implemented as easily as in electronics.
The alternative solution is to represent the DAG as an adjacency matrix (not
as an adjacency list since that requires linked lists). However, although
space inefficient adjacency matrices can be conveniently represented as two-
dimensional arrays, they only contain the topology information and not
information about the node value itself. More important than the necessity to
represent values of the nodes in the DAG is the fact that a node in a DAG may
be uninstantiated, i.e., it possesses no value at all and possibly waits to be
unified with some other variable not yet evaluated. Such a situation may
require waiting in a demand list of another variable to avoid busy waiting on
a variable by a PE. Moreover, when the node does become instantiated, it may
be instantiated with some structure already present in the memory. This would
then require that the matrix memory be modified to point to the data structure
and that the connections to the demand list be removed. This removal would
then require either the rearrangement of the total mnory or the addition of
the freed up space to some list. In any case, representing uninstantiated
variables, commimo to logic programming languages, implies extensive use of
pointer structures and location addressable memory. Similarly, describing the
processes and the variables in the descriptor and term memory, respectively,
also requires manipulating pointers and list structures.

Because of the difficulty in feasibly implementing location-based addressing
by using OFSMs and separate menory structures, it becomes untenable to
directly implement optical processors for executing logic programming
languages.

Issues in optical implementation of functional prograQinn languages

Cne of the major disadvantages of logic programing language execution in
optics was the presence of uninstantiated variables. Functional languages, on
the other hand, do not present this problem since in their computational
model, all variables are instantiated[10]. To evaluate functional languages
for optical implementations, both reduction and dataflw models were used
since both have been implemented in electronics for high performance. The
data flow computational model is considered first followed by a discussion on
reduction.

A dataflow machine [13] requires multiple processors to operate on different
portions of the dataflow graph if and when input arguments for different
operators become available. This requires each PE to maintain the complete
graph and possess the capability of recognizing input arguments and their
context with the help of tags. Since an operation may require multiple
arguments, a PE in the multiprocessor architecture has to maintain a tag-
matching unit while waiting for all arguments of an operation. The typical
topology of the architecture is an nu routing network connecting the PEs
[13].

The level of granularity of the parallelism, from the point of view of optics,
is high since each PE, implemented in terms of OFSMs, has to be cognizant of
the complete dataflw graph. However, the overhead at the level of data
object management is also substantial since tags must be generated,
maintained, and matched at runtime. In a broad sense, the complexity of the
optical architecture for this computational mode will be as complex as that in
a logic language except that the variables will not be uninstantiated during
evaluation.

The next computational model considered will be that of reduction. The type
that appears most promising for parallelism is that of cumbinator graph
reduction. 111] In cumbinator graph reduction, each step is an atomic step in
which the graph is mutated in a manner consistent with the reduction rule of
the corresponding cumbinator. In a distributed system, where the graph is
distributed in a network of PEs, a message-passing strategy will allw each
reduction to occur in piecemeal fashion [14]. The graph reduction evaluation
model appears very well suited to parallel computing at a medium-level
granularity. This level corresponds to evaluating reducible expressions
(redexes) in parallel. hus, individual redexes that are available can be
evaluated in parallel by different PEs.

The critical design challenge in optics is how to realize the cumbinator
reduction process in parallel. Since the PE responsible for the cambinator
application is a simple combinational function, an OFSM implementation is not
necessary; however, since the argument of the combinators can be a data
structure, a list in the general case, of any size, the transformations may be
difficult to handle if the data is moved every time into different nodes. In
the electronic case, pointers can be used very conveniently without actual

movement of data. Thus, unless the data is of simple structure, using
pointers becomes attractive. Another instance where pointer struictures are
necessary is in the evaluation of common subexpressions. TO avoid wasted
canputation, common expressions are shared in graph reduction unlike in string
reduction, which is similar in all other respects to graph reduction.
However, use of shared expressions in ombinator graph reduction implies using
indirection to ensure that argument values are not lost before all expressions
involving the subexpression have been evaluated [15]. Given these issues, it
would therefore appear more attractive to examine a non-distributed
architectures, where graph mutations are managed in a common memory. Such
architectures would be designed to exploit low-level parallelism in optics.

General issues in ixrlementing parallel architectures in optics

While the above issues relate to the specific computational models of symbolic
processing languages, there are some aspects of compitational support that are
cmon to any multiprocessor architectures. [An important issue that is
difficult to address in optics is that a multiprocessor architecture has a
finite nunber of processors but may have many more processes created.] This
implies that some processor will have to be responsible for the execution of
more than one process. Handling more than one process is equivalent to
handling more than one context and requires context switching. Context
switching, in turn, requires maintenance of stacks and other indirect
addressing schemes which are difficult to implement without location
addressable menory. Consequently, context switching and recursion in general
are difficult to implement in optics.

VI. ON(LUSIONS AND PLANS

We have examined different omputational models for languages for expert
systems and found that it is not possible to directly exploit optical
primitives. Based on the cumparison of the computational models of logic
progranmning and pure functional languages, however, it is clear that
functional programming languages are a better candidate for optics
implementation. The computational model that may be most worthwhile
investigating is that of SKI combinator graph reduction in a non-distributed
architecture targeted towards exploiting low-level parallelism.

Examination of the models has also elucidated the need for a way to represent
complicated relationships between data items, specifically, the need for
pointers. Since optical memories are not typically addressable, this
requirement is not easily filled. Future investigation will center on the
examination of proposed optical computing architectures to determine if they
can be modified to perform data handling operations. Specifically, we will be
investigating symbolic substitution [2] to see if it can exploit non-
distributed, low-level parallelisn. We have selected symbolic substitution
because it does not require space variant interconnects, since other
Honeywell-funded results (16] indicate optics cannot achieve general
interconnects of the density required for non-distributed architectures.

In summazy, the efforts of the second quarter will be to examine, from the
botton up, how optics can provide the identified macro-functions and determine
if they can be performed with enough speed to provide for real-time symbolic
processing.

VII. REFERENCES

[I] Alexander A. Sawchuk and Timothy C. Strand, 'Digital Optical Computing',
Proceedings of the IEEE, Vol. 72, No. 7, July 1984, pp. 758-779.

(2] Alan Huang, 'Architectural Considerations Involved in the Design of An
Optical Digital Cnmputer', Proceedings of the IEEE, Vol. 72, No. 7, July 1984,
pp. 780-786: Karl-Heinz Brenner, Alan Huang, and Norbert Streibl, "Digital
optical computing with symbolic substitution", Applied Optics, Vol. 25, 15
September 1986, pp. 3054-3060.

(3] Keith B. Jenkins and C. Lee Giles, 'Parallel Processing Paradigms and
Optical Computing', SPIE Vol. 625, Optical Computing (1986), pp. 22-29.

(4] Rodney A. Schmidt and W. Thnmas Cathey, 'Optical Representations for
Artificial Intelligence Problems', SPIE Vol. 625, Optical Computing (1986) pp.
226-233.

[5] J. Tanida and Y. Ichioka, 'Optical Logic Array Processor Using
Shadowgrams', Journal of Optical Society of America, Vol. 73, No. 6, June
1983, pp. 800-809.

[61 T. K. Gaylord, et al., 'Optical Digital Truth Table Look-up Processing',
Optical Engineering, January/February 1985, Vol. 24, No. 1.

(7] C. Warde and J. Kottas, "Hybrid optical inference machines: architectural
considerations," Applied Optics, Vol. 25, 15 March 1986, pp. 940-947.

[8] P.W. Smith and W.J. Tcmlinson, "Bistable optical devices promise
subpicosecond switching," IEEE Spectrum, Vol. 18, June 1981, pp. 26-33.

[9] James Richardson, et al., 'Interim Report on Very Large Parallel Dataflow
Program', Honeywell Corporate Systems Development Division, May 1986.

[10] Keith Clark and Steve Gregory, 'PARLOG: Parallel Programing in Logic',
Research Report DOC 84/4, June 1985, Department of Computing, Imperial
College of Science and Technology, University of London.

(11] Peter Henderson, Functional Programming Application and Imlementation,
Prentice-Hall International, 1980.

[12] Dror Sarid, Ralph S. Jameson, and Robert K. Hickernell, "Optical
bistability on reflection with an InSb etalon controlled by a guided wave,"
Optics Letters, Vol. 9, May 1984, pp. 159-161.

(13] Arvind and V. Kathail, 'A Multiple Processor Dataflow Machine that
Supports Generalized Procedures', Proc. of the 8th Annual Symposium on
Computer Architecture, May 1981, pp. 291-302.

[14] Paul Hudak and Benjamin Goldberg, 'Distributed Execution of Functional
Programs Using Serial Combinators', IEEE Transactions on Conputers, Vol. C 34,
No. 10, October 1985, pp. 881-891.

[15] David Turner, 'A New Implementation Technique for Applicative
Languages', Software-Practice and Experience, Vol. 9, 1979, pp. 31-49.

(16] M.W. Derstine, 'Fundamental Geometrical Limitations of Free Space Optical
Interconnects,' Unpublished Seninar (1986).

[17] T.J.W. Clarke, et al., 'SKIM - the S, K, I Reduction Machine', Proc. of
the 1980 AC4 LISP Conference, pp. 128-135.

[18] W.R. Stoye, et al., 'Sane Practical Methods for Rapid Combinator
Reduction', Proc. of the 1984 ACM Symposium on LISP and Functional Languages,
pp. 159-166.

[19] R.J.M. Hughes, 'Super-Combinators', Proc. of the 1982 ACM Symposiun on
LISP and Functional Languages, pp. 1-10.

[20] Simon L. Peyton Jones, 'An Investigation of the Relative Efficiencies of
Cmbinators and Lambda Expressions', Proc. of the 1982 AC24 Syposiun on LISP
and Functional Languages, pp. 150-158.

[21] Steven Tighe, 'A Study of Parallelisn Inherent in Combinator Reduction',
MCC Tech. Report, PP-140-85, November 1985.

[22] Paul Hudak and Benjamin Goldberg, 'Experiments in Diffused Ccmbinator
Reduction', Proc. of the 1984 ACM Symposium on LISP and Functional Languages,
pp. 167-176.

[23] H. Richards, Jr., 'An Overview of the Burroughs NCiMA', Burroughs Austin
Research Center, January 1985.

Directed Acyclic Graph

a

b fS

C

d
e

f

CL

0)

a I'

z 1 0@ *

00

00

(U) -

c

